검색 상세

New brain metastases after whole-brain radiotherapy of initial brain metastases in breast cancer patients: the significance of molecular subtypes (KROG 16-12)

초록/요약

Purpose: To identify the risk factors leading to new brain metastases (BM) following brain-directed treatment for initial BM resulting from breast cancer (BC). Methods: In this multi-institutional study, 538 BC patients with available follow-up imaging after brain-directed treatment for initial BM were analyzed. Tumor molecular subtypes were classified as follows: hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2−, n = 136), HER2-positive (HER2+, n = 253), or triple-negative BC (TNBC, n = 149). Results: In 37.4% of patients, new BM emerged at a median of 10.5 months after brain-directed treatment for initial BM. The 1-year actuarial rate of new BM for HR+/HER2−, HER2+, and TNBC were 51.9%, 44.0%, and 69.6%, respectively (p = 0.008). Initial whole-brain radiotherapy (WBRT) reduced new BM rates (22.5% reduction at 1 year, p < 0.001) according to molecular subtype (HR+/HER2−, 42% reduction at 1 year, p < 0.001; HER2+, 18.5%, p = 0.004; TNBC, 16.9%, p = 0.071). Multivariate analysis revealed an increased risk of new BM for the following factors: shorter intervals between primary BC diagnoses and BM (p = 0.031); TNBC (relative to HR+/HER2−) (p = 0.016); presence of extracranial metastases (p = 0.019); number of BM (>4) (p < 0.001); and BM in both tentorial regions (p = 0.045). Anti-HER2 therapy in HER2+ patients (p = 0.013) and initial use of WBRT (p < 0.001) significantly lowered new BM development. Conclusions: Tumor molecular subtypes were associated with both rates of new BM development and the effectiveness of initial WBRT. Anti-HER2 therapy in HER2+ patients significantly lowered new BM occurrence. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.

more