검색 상세

효율적인 절단 육면체 요소 및 위상장 균열 전파 해석을 위한 적응적 요소망 세분화 기법 개발

Development of Efficient Trimmed Hexahedral Elements and an Adaptive Mesh Refinement Scheme for Phase-field Crack Propagation Analysis

초록/요약

This study presents efficient trimmed hexahedral (TH) elements and an adaptive mesh refinement technique for TH meshes. TH meshes are created by cutting regular hexahedral background mesh with geometric surfaces. A TH mesh is hexahedral-dominant FE mesh composed of TH elements on domain boundary and regular hexahedral elements inside domain. TH elements are subdomain-wisely interpolated using precomputed shape function values for the master elements. Master TH (MTH) elements can be constructed in reference coordinates since TH elements are created using a small number of representative polyhedral configurations. Harmonic shape functions the FE solutions to Laplace’s equations are precomputed using centroid-based ten-point tetrahedral subdivision with the support points for TH elements by prescribing barycentric coordinates as Dirichlet boundary conditions on non-planar polygonal faces. Isoparametric shape functions for TH elements are explicitly defined over tetrahedral subdomains using FE interpolation of precomputed shape function values at the support points. Standard Gaussian quadrature is adopted for numerical integration on tetrahedral subdomains for consistency with piecewise continuous shape function derivatives. Precomputed shape functions values at the support points are arithmetically adjusted for modified TH elements in process of quality improvement. A patch test and numerical examples are presented to show the effectiveness and efficiency of the present TH elements and TH meshes. An efficient adaptive mesh refinement technique is also developed based on octree refinement for hexahedral background mesh. On domain boundary of which mesh density changes, transition TH (trTH) elements are introduced by adding hanging nodes which assigned to degrees of freedom on conforming transition interfaces. As an application of adaptive TH mesh refinement, crack propagation analysis using a hybrid phase-field model for brittle fracture is presented. A quality FE meshes for analyzing arbitrary crack propagation through complex domain is achieved by adaptively refined TH meshes. An efficient multi-threshold criterion is also proposed for progressive mesh refinement. In the multi-threshold criterion, a set of threshold values are determined based on one-dimensional solution to a diffusive crack of the phase-field model to meet a suggestion on mesh density sufficient to capture the crack topology. In the numerical examples, adaptively refined TH meshes using the multi-threshold criterion show the effectiveness and efficiency in the crack propagation analyses compare with the results obtained using a single-threshold criterion.

more

초록/요약

본 연구는 절단 육면체 (trimmed hexahedral; TH) 요소망을 사용한 유한요소해석을 위한 효과적인 TH 요소와 TH 요소망의 적응적 세분화 기법을 나타낸다. TH 요소망은 육면체 배경 격자를 영역 표면을 따라 절단하여 생성되며, 임의의 영역 형상에 대해 내부의 균일한 육면체 요소와 표면의 TH 요소로 구성되는 우수한 품질의 요소망을 자동적으로 생성할 수 있다. TH 요소는 임의 형상의 다면체(polyhedral) 요소와 달리 marching cubes (MC) 알고리즘에 기반하여 대표 요소 형상으로 사전 정의되며, isoparametric mapping을 위해 master TH (MTH) 요소에서 미리 계산된 조화(harmonic) 형상함수를 사용한 사면체 하위영역 기반 명시적 TH 요소 형상함수가 제시된다. 패치 테스트를 포함한 수치 예제는 TH 요소의 명시적 형상함수와 일관된 하위 영역의 Gauss 구적법을 사용하여 우수한 수치 정확성과 계산 효율성을 나타낸다. 또한, Octree 분할된 육면체 배경 격자를 사용한 TH 요소망의 적응적 세분화 기법이 제시된다. 요소 세분화 정도가 변화하는 전이(transition) 경계면을 처리하기 위해 적합한 형상함수를 사용하는 transition TH (trTH) 요소가 도입되며, 이를 통해 세분화 이후에도 영역 내부에서 육면체 지배적인 고품질의 요소망이 유지된다. 균열 상장 (phase-field) 모델의 취성 파손 해석에서 임의 경로를 따라 진전하는 균열 주변의 조밀한 요소망을 유지하기 위해 TH 요소망의 적응적 세분화가 이루어지며, 세분화에 따른 계산 비용을 효과적으로 줄이기 위한 다중 임계 기준이 제시된다. 수치 예제를 통해 균열 성장에 따라 단계적으로 세분화되는 TH 요소망을 통해 효율적인 균열 전파 해석 적용을 나타낸다.

more

목차

Summary i
Table of contents iii
List of tables v
List of figures vi
1. Introduction 1
2. Trimmed hexahedral (TH) meshes 6
2.1. Marching cubes algorithm 6
2.2. Geometric surfaces 8
2.3. Hexahedral background mesh 9
2.4. Trimming background mesh 11
2.5. Constructing TH meshes 12
2.6. Resolving ambiguity in TH elements 15
3. Trimmed hexahedral (TH) finite elements 18
3.1. Master TH elements 18
3.2. Tetrahedral subdivision 19
3.3. Explicit shape functions for TH elements 23
3.4. Improving quality of TH elements 29
3.5. Numerical integration 32
3.6. Numerical examples 33
3.6.1. Patch test 34
3.6.2. A gourd-shaped beam 36
3.6.1. A cube containing voids 41
3.6.2. A crank shaft 45
4. Adaptive mesh refinement for TH meshes 49
4.1. Introduction 49
4.2. Octree refinement for hexahedral background mesh 49
4.3. Construction of conforming transition TH elements 51
4.4. Shape functions for transition TH elements 54
5. Phase-field crack propagation analysis of brittle fracture using adaptive TH meshes 56
5.1. Introduction 56
5.2. Phase-field approximation of crack discontinuity 58
5.3. Phase field models of brittle fracture 60
5.4. FE implementation of staggered sub-problems 63
5.5. A multi-threshold criterion for adaptive mesh refinement 67
5.6. Numerical examples 69
5.6.1. An edge cracked plate with holes 69
5.6.2. A gourd-shaped beam 76
5.6.3. A cube containing voids 82
6. Conclusions 90
Related Publications 92
References 93
초록 103

more